BACCALAURÉAT GÉNÉRAL

SESSION 2004

MATHÉMATIQUES

SÉRIE: ES

Durée de l'épreuve : 3 heures — Coefficient : 7.

Ce sujer comporte 7 pages, numerotées de 1 à 7

Des éléments de formulaire sont joints au sujet.

L'usage d'une calculatrice est autorisé

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Commun à tous les candidats

Sur le <u>document réponse n°1 en page 6/7</u> ci-joint, la courbe C_f représente, dans le plan muni d'un repère orthogonal, une fonction f définie dans l'intervalle [-1; 6].

On sait que la courbe C_f :

- coupe l'axe des ordonnées en le point A, d'ordonnée 3, et l'axe des abscisses en le point B, d'abscisse b,
- admet une tangente parallèle à l'axe des abscisses au point d'abscisse 2,
- admet la droite T_A pour tangente au point A.

PARTIE A Etude graphique de la fonction f

Répondre sans justification aux questions A.1, A. 2, A 3 et A.4 sur le document réponse n°1, page 6/7.

PARTIE B Etude de la fonction $g = \ln_0 f$

On étudie maintenant la fonction g qui à x associe g(x) = ln (f(x)), où ln désigne la fonction logarithme népérien.

Chacune des réponses devra être justifiée avec soin sur la copie :

- B.1 Préciser l'intervalle de définition I de la fonction g.
- B.2 Déterminer la limite de la fonction g quand x tend vers b.
- B.3 Etudier les variations de la fonction g sur l'intervalle I. Dresser son tableau de variation.
- B.4 Calculer g'(0) puis g'(2);
- B.5 Résoudre, dans I, l'inéquation $g(x) \ge -\ln 2$. On utilisera les résultats de la partie A.

Candidats ayant suivi l'enseignement de spécialité

Lors d'une partie de fléchettes, un joueur envoie une à une des fléchettes vers une cible. La tentative est réussie quand la fléchette atteint la cible, elle échoue dans le cas contraire.

Pour la 1^e fléchette, les chances de réussite ou d'échec sont égales. Pour chaque lancer suivant, la probabilité qu'il réussisse dépend uniquement du résultat du lancer précédent :

- Elle est de 0,7 quand le lancer précédent atteint la cible ;
- Elle est de 0,4 quand il a échoué.

On note:

- C_n l'événement « La n^e fléchette atteint la cible »
 E_n l'événement « Le n^e lancer a échoué »
- 1. La partie ne comporte que deux fléchettes. Traduire la situation à l'aide d'un arbre pondéré. En déduire la probabilité pour que la 2^e fléchette atteigne la cible.

Dans toute la suite de l'exercice, n désigne un entier supérieur ou égal à 1 et on considère que le jeu se déroule avec n fléchettes

On désigne par c_n la probabilité d'atteindre la cible lors du n^e lancer et par e_n la probabilité que ce n^e lancer échoue.

On note $P_n = [c_n e_n]$ la matrice ligne qui traduit l'état probabiliste lors du n^e lancer.

La matrice $P_1 = [0,5 0,5]$ traduit donc l'état probabiliste initial lors du 1^{er} lancer.

- 2. a) Représenter la situation à l'aide d'un graphe probabiliste.
 - b) Donner l'état P2.
- 3. a) A l'aide de la relation $P_{n+1} = P_n \times A$ où A est la matrice de transition $\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$, exprimer la probabilité c_{n+1} d'atteindre la cible lors du $(n+1)^e$ lancer en fonction des probabilités c_n et e_n
 - b) Montrer que pour tout entier $n \ge 1$, on a $c_{n+1} = 0.3$ $c_n + 0.4$.
- 4. Soit la suite (u_n) définie, pour tout entier naturel $n \ge 1$, par $u_n = c_n \frac{4}{7}$.
 - a) Montrer que la suite (u_n) est une suite géométrique de raison 0,3.
 - b) En déduire u_n puis c_n en fonction de n.
 - c) Calculer la limite de c_n quand n tend vers l'infini. Interpréter cette limite.

Commun à tous les candidats

PARTIE A: Etude de propriétés de quelques fonctions

On considère les fonctions f et g définies sur l'intervalle [0; 900] par :

$$f(x) = 7500 e^{0,002x} et g(x) = 15 e^{0,002x}$$
.

- 1. Montrer que f est une primitive de la fonction g.
- 2. Soit la fonction h définie sur] 0 ; 900] par $h(x) = \frac{f(x)}{x}$.
 - a) Calculer la limite de h en 0:
 - b) Calculer la dérivée de h et montrer que la fonction h admet un minimum, noté b, pour une valeur de x, notée a.

Dans le repère orthogonal ci-joint (<u>document réponse n° 2 page 7/7</u>) sont tracées les courbes C_g et C_h représentatives des fonctions g et h dans l'intervalle 0; 900 ainsi que la droite (D) d'équation y = 45.

- 3. Montrer que les courbes C_g et C_h représentatives des fonctions g et h se coupent au point I(a;b).
- 4. a) Résoudre dans [0; 900] l'équation g(x) = 45. Soit x_0 la solution de cette équation.
 - b) Justifier que l'équation h(x) = 45 possède exactement deux solutions x_1 et x_2 dans l'intervalle 0; 900 x_1 (x_1 désignera la plus petite des deux solutions, x_2 la plus grande x_2

Donner une valeur arrondie à l'unité de x_1 et x_2 .

5. Montrer que $\int_0^{x_1} (45 - g(x)) dx = f(0)$.

On note E le point d'intersection de la droite (D) avec C_g , R et F les points d'intersection de cette droite (D) avec C_h , , tandis que B et L désignent les points d'intersection de l'axe des ordonnées avec respectivement la droite (D) et la courbe C_g .

6. Placer sur l'axe des abscisses les nombres a, x_0, x_1 et x_2 .

PARTIE B: Etude de coûts

- <u>Rappels</u>: Le coût marginal d'une production q assez grande est le coût de l'unité suivante, c'est à dire de la $(q+1)^e$ unité. La fonction « coût marginal » C_m est considérée comme la dérivée de la fonction « coût total » C_T .
 - Le coût moyen unitaire d'une production q est le quotient $\frac{C\tau(q)}{q}$.

Une entreprise peut produire jusqu'à 900 unités par jour.

- Ses coûts fixes journaliers s'élèvent à 7500 €;
- Toute sa production journalière est vendue au prix unitaire de 45 €;
- Pour tout x de l'intervalle]0; 900], le coût marginal de x unités est modélisé par : $C_{\rm m}(x) = g(x)$, où g est la fonction définie dans la partie A.
- 1. a) Justifier que le coût total journalier de production est défini par la fonction f étudiée dans la partie A.
 - b) En utilisant le résultat de la question A.5, en déduire le domaine du plan dont l'aire représente les coûts fixes journaliers. (On hachurera le domaine sur le document réponse).
- 2. Que représente la valeur h(x)?
- 3. Justifier, à partir du graphique, que le bénéfice journalier de l'entreprise est positif lorsque la production est comprise entre x_1 et x_2 .
- **4.** a) Calculer, à 10⁻¹ près, le bénéfice réalisé sur la fabrication de la 401^e unité. On fera apparaître ce bénéfice sur le graphique.
 - b) En déduire ce que représente l'aire du domaine, délimité par la droite d'équation $x = x_1$ la droite d'équation $x = x_0$ et les courbes (D) et C_g .

MATHÉMATIQUES - SÉRIE ES

Eléments de formulaire

Probabilités

Probabilité conditionnelle de B sachant A

 $P_A(B)$ est définie par $P(A \cap B) = P_A(B) \times P(A)$

Cas où A et B sont indépendants : $P(A \cap B) = P(A) \times P(B)$

Formule des probabilités totales

Si les évènements B_1, B_2, \ldots, B_n forment une partition de Ω alors $P(A) = P(A \cap B_1) + P(A \cap B_2) \dots + P(A \cap B_n)$.

Analyse

Limites

$$\lim_{x \to 0} \ln x = -\infty$$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

Dérivées et primitives

Les hypothèses permettant d'utiliser les formules doivent être vérifiées par le candidat.

$$(uv)'=u'v+uv'$$

$$(e^{u})' = e^{u} u'$$

$$(\ln u)' = \frac{u'}{u}$$

Calcul intégral

Les hypothèses permettant d'utiliser les formules doivent être vérifiées par le candidat.

Si F est une primitive de f alors $\int_{a}^{b} f(t)dt = F(b) - F(a).$ Valeur moyenne de f sur [a;b]: $\frac{1}{b-a} \int_{a}^{b} f(t)dt.$