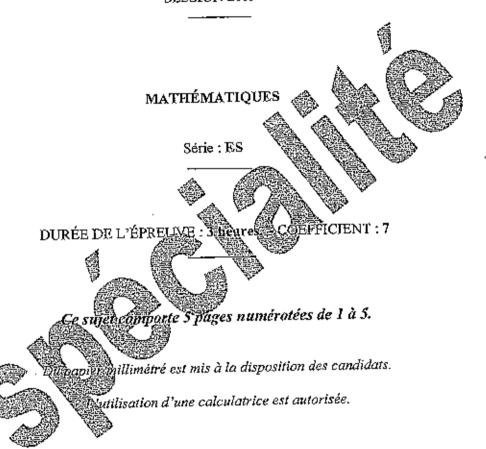
BACCALAURÉAT GÉNÉRAL

SESSION 2009



Le candidat doit traiter tous les exercices.

Il est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée. Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Page: 1/5;

Commun à tous les candidats

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes quatre réponses sont proposées, une seule de ces réponses convient. Sur votre copie, noter le numéro de la question et recopier la réponse exacte. Aucune justification n'est demandée. Une seule réponse est acceptée.

Barème : Une réponse exacte rapporte 1 point, une réponse inexacte enlève 0,5 point ; l'absence de réponse à une question ne rapporte ni n'enlève de point. Si le total donne un nombre négatif, la note attribuée à cet exercice sera ramenée à zéro.

- 1. On désigne par \mathcal{C} la courbe représentative dans un repère orthogonal d'une fonction g définie sur]2; $+\infty$ [. Si $\lim_{x\to 2} g(x) = +\infty$, alors:
 - La droite d'équation y = 2 est asymptote horizontale à C
 - La droite d'équation y = 2 est asymptote verticale à C
 - La droite d'équation x = 2 est asymptote horizontale à C
 - La droite d'équation x = 2 est asymptote verticale à C
- Pour tout nombre τéel x, ln(4e^x) est égal à :
 - $x + \ln 4$
 - 4+x
 - 2x
 - 4x
- 3. Soit f la fonction définie sur l'ensemble des réels R par $f(x) = e^{-x^2}$ et soit f ' sa fonction dérivée sur R. Alors :
 - $f'(x) = -x^2 e^{-2x}$
 - $f'(x) = -2xe^{-x^2}$
 - $f'(x) = e^{-2x}$
 - $f'(x) = e^{-x^2}$
- 4. $\lim_{x\to+\infty} e^{1-\ln x}$ est égale à :
 - - ∞
 - 0
 - e
 - + ∞

Pour les candidats ayant suivi l'enseignement de spécialité

Soit (u_n) la suite définie par :

pour tout entier naturel n, $u_{n+1} = 0.85 u_n + 1.8$. $u_0 = 8$

- 1. Sur une feuille de papier millimétré construire un repère orthonormé (unité : 1cm), où l'axe des ordonnées est placé à gauche de la feuille.
 - a. Dans ce repère, tracer les droites d'équations respectives y = 0.85x + 1.8 et y = x.
 - b. Dans ce repère, placer uo sur l'axe des abscisses puis, en utilisant les droites précédemment tracées, construire sur le même axe u_1 , u_2 et u_3 . On laissera apparents les traits de construction.
 - c. À l'aide du graphique, conjecturer la limite de la suite (u_n) .
- 2. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = u_n 12$.
 - a. Démontrer que (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - b. Exprimer, pour tout entier naturel n, v_n en fonction de n. En déduire que, pour tout entier naturel n, $u_n = 12 - 4 \times 0.85^n$.
 - c. Donner le sens de variation de la suite (v_n) . En déduire celui de la suite (u_n) .
 - d. Déterminer la limite de la suite (u_n) .
- 3. Un magazine est vendu uniquement par abonnement. On a constaté que :
 - il y a 1800 nouveaux abonnés chaque année;
 - d'une année sur l'autre, 15% des abonnés ne se réabonnent pas.

En 2008, il y avait 8000 abonnés.

- a. Montrer que cette situation peut être modélisée par la suite (u_n) où u_n désigne le nombre de milliers d'abonnés en (2008 + n).
- b. En utilisant la question 2) b), calculer une estimation du nombre d'abonnés en 2014.

Commun à tous les candidats

Dans un laboratoire, se trouve un atelier nommé « L'École des Souris ». Dès leur plus jeune âge, les souris apprennent à effectuer régulièrement le même parcours. Ce parcours est constitué de trappes et de tunnels que les souris doivent emprunter pour parvenir à croquer une friandise. Plus la souris effectue le parcours, plus elle va vite.

Une souris est dite « performante » lorsqu'elle parvient à effectuer le parcours en moins d'une

Cette « École » élève des souris entraînées par trois dresseurs : 48 % des souris sont entraînées par Claude, 16 % par Dominique et les autres par Eric.

Après deux mois d'entraînement, on sait que :

- parmi les souris de Claude, 60 % sont performantes;
- 20 % des souris de Dominique ne sont pas encore performantes ;
- parmi les souris d'Eric, deux sur trois sont performantes.

On choisit au hasard une souris de cette « École ».

On note C, D, E et P les événements suivants :

- C : « la souris est entraînée par Claude » ;
- D: « la souris est entraînée par Dominique » ;
- E : « la souris est entraînée par Eric » ;
- P: « la souris est performante ».

1.

- a. Déterminer p(C), p(E), $p_D(\overline{P})$ et $p_E(P)$.
- b. Traduire l'énoncé à l'aide d'un arbre pondéré.
- Déterminer la probabilité de l'événement « la souris est entraînée par Claude et est performante ».
- 3. Démontrer que la probabilité pour une souris d'être performante est de 0,656.

Pour les questions suivantes, on arrondira les résultats au millième.

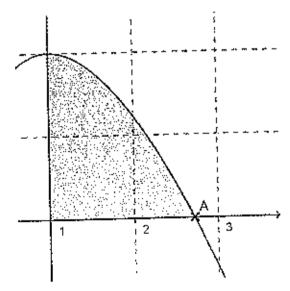
- 4. On choisit au hasard une souris parmi celles qui sont performantes. Quelle est la probabilité que cette souris soit entraînée par Dominique?
- 5. Pour cette question, toute trace de recherche même incomplète sera prise en compte. On choisit maintenant au hasard quatre souris de cette « École ». On assimile ce choix à un tirage avec remise. Quelle est la probabilité d'obtenir au moins une souris performante?

Page: 4/5

Commun à tous les candidats

Le plan est rapporté à un repère orthogonal. Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = 2x(1 - \ln x)$. On appelle $\mathcal C$ la courbe représentative de la fonction f.

- a. Calculer les limites de la fonction f en +∞ et en 0 (on rappelle que la limite en 0 de la fonction u définie sur l'intervalle]0; +∞ [par u(x) = xln x est 0).
 - b. Déterminer f'(x) pour $x \in [0]$; $+\infty[0]$ où f' est la fonction dérivée de f.
 - c. Étudier le signe de f'(x) pour $x \in]0$; $+\infty[$; puis dresser le tableau de variation de la fonction f sur l'intervalle]0; $+\infty[$.
- Résoudre sur]0; +∞ [l'équation f(x) = 0. En déduire que la courbe C admet un unique point d'intersection A avec l'axe des abscisses et donner les coordonnées du point A.
- 3. a. Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle]0; $+\infty$ [. Que peut-on en déduire pour la courbe C?
 - b. Montrer que la fonction F définie sur]0; $+\infty$ [par $F(x) = x^2 \left(\frac{3}{2} \ln x\right)$ est une primitive de f sur]0; $+\infty$ [.
 - c. On désigne par D le domaine délimité par la courbe C, l'axe des abscisses et les droites d'équations x = 1 et x = e.



Calculer, en unités d'aire, la valeur exacte de l'aire de D puis, en donner une valeur approchée à 10^{-2} près.